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Abstract
Six new periodic analytic solitary-wave solutions of two coupled nonlinear
Klein–Gordon and Schrödinger equations are presented. Besides their
application to optical solitary wavepairs due to cross-phase modulation or
modal birefringence, their application to the (presently) unphysical regime and
the significance of symmetry are discussed. For two related special sets of the
two coupled equations, additional possible analytic solutions are presented.

PACS numbers: 05.45.Yv, 02.30.Jr, 02.30.Ik

1. Introduction

The advantage of using solitary-wave-like input pulses for long-distance communication
systems has been known for many years [1–3]. The interplay between dispersion and
nonlinearity gives rise to bright solitary waves that can propagate unattenuated in the anomalous
group velocity dispersion (GVD) regime, while the normal GVD regime allows an undistorted
propagation of a dark solitary wave. Important new and interesting features to nonlinear pulse
propagation in a fibre are introduced when coupling between the two orthogonally polarized
components of an optical field or when two pulses with different wavelengths copropagate
in a fibre, for which a set of two coupled nonlinear Schrödinger (CNLS) equations are used
to describe their evolution. Optical solitary waves induced by cross-phase modulation, and
related work on the bright–bright [4, 5], bright–dark [6–8], bright–grey [9, 10] and grey–grey
[11, 12] solitary wavepairs, have been presented by many authors [3].

In this paper, we begin with a set of two coupled equations,which may be called the general
two coupled nonlinear Klein–Gordon (CNKG) equations that include CNLS equations as a
special case, with arbitrary coupling parameters that are more general than those that are
applicable to problems in optical communication, and we present a set of six new possible
periodic solitary-wave solutions that are more general than those previously obtained [2, 9,
13–21]1. We also present a number of additional new possible periodic solitary-wave solutions
for those special CNKG equations that possess certain ‘symmetries’.
1 C2

2 for solution (II) in the third paper in [16] should be equal to A2
2 + α2k2.
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While the specific two CNLS equations with coupling parameters that are known to be
applicable to the problems in optical communication and their corresponding non-periodic
solitary wavepairs have rightfully received the due attention, the study of the more general
set of two CNLS equations and their corresponding periodic solitary-wave solutions that we
undertake in this paper, will be seen to give us a broader perspective and understanding on the
possibility and generality of analytic solutions for these equations. They have mathematical
as well as potential future physical implications. One of the mathematical implications is the
role played by a certain two CNLS equations that are integrable [22–24] and the relationship
of a certain set [21] of N CNLS equations with those that pass the Painlevé test [25].

The plan of this paper is as follows. Beginning with a set of two general CNKG equations,
we present, in section 2, six new analytic periodic solitary-wave solutions and the conditions
for the propagation of these wavepairs. The familiar bright–bright, grey–grey and bright–
grey wavepairs are three special cases of these six wavepairs. The significance of these
six wavepairs with regard to the possibility of their propagation in various combinations of
anomalous and normal GVD regimes for a whole range of interaction values that are both
physical and (presently) unphysical, is discussed. In sections 3 and 4, we present two special
classes of these CNKG equations: one we call the symmetric case and the other we call the
L-set, and we present for the symmetric case a new superposition periodic solution, and for
the L-set ten additional analytic periodic solutions that are not special cases of the analytic
solutions for the general two CNLS equations. Although only four of these ten additional
periodic solutions for the L-set are new, the significance of these four in terms of ‘completing’
the analytic solutions for the set that has been shown to be integrable and to pass the Painlevé
test is again noted [21]. In section 5, two other types of coupled equations that are known to
be reducible to the two CNLS equations considered are briefly discussed. A summary is given
in section 6.

2. Two CNKG equations, general case

Consider the following general set of CNKG equations for the two complex amplitudes or
wavefunctions φ1(z, t) and φ2(z, t) as functions of position z and time t,

iφ1z + α′′
1φ1zz + iβ ′

1φ1t + β ′′
1φ1tt + κ1φ1 + R1(|φ1|2 + ν|φ2|2)φ1 = 0

iφ2z + α′′
2φ2zz + iβ ′

2φ2t + β ′′
2φ2tt + κ2φ2 + R2(ν|φ1|2 + |φ2|2)φ2 = 0

(1)

where κm, α′′
m, β

′
m, β ′′

m,Rm and ν are real parameters characteristic of the medium and
interaction, and where the subscripts in z and t denote derivatives with respect to z and t, and
the subscripts 1 and 2 are for the two components. For problems in the optical communication,
φ1 and φ2 denote the electric field envelopes, and φ1zz and φ2zz are usually neglected since φ1

and φ2 are assumed to be slowly varying functions of z [3]. In that case, we set α′′
1 = α′′

2 = 0,
and equations (1) become two CNLS equations. For the case α′′

1 , α
′′
2 , β

′′
1 and β ′′

2 not equal to
0, the first derivative terms with respect to z and t can be eliminated with the substitutions

φj(z, t) = ψj (z, t) exp{−i(z/α′′
j + β ′

j t/β
′′
j )/2} j = 1, 2

which transform equations (1) into the following two coupled nonlinear Klein–Gordon-type
equations for ψj ,

α′′
1ψ1zz + β ′′

1ψ1tt + µ1ψ1 + R1(|ψ1|2 + ν|ψ2|2)ψ1 = 0

α′′
2ψ1zz + β ′′

2ψ2tt + µ2ψ2 + R2(ν|ψ1|2 + |ψ2|2)ψ2 = 0

with µj = κj + 1/(4α′′
j ) + β ′2

j

/
(4β ′′

j ).
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Table 1. The six possible wavepairs for the solutions of equation (1) given by equation (3):
solution 1 belongs to group I, solutions 2–4 belong to group II, and solutions 5 and 6 belong to
group III.

Solution

1 or (I, 1) g1 = g2 = sn(γ ξ)

2 or (II, 1) g1 = g2 = cn(γ ξ)

3 or (II, 2) g1 = g2 = dn(γ ξ)

4 or (II, 3) g1 = cn(γ ξ) g2 = dn(γ ξ)

5 or (III, 1) g1 = sn(γ ξ) g2 = cn(γ ξ)

6 or (III, 2) g1 = sn(γ ξ) g2 = dn(γ ξ)

We consider equations (1) as our starting equations as we can easily set α′′
1 = α′′

2 = 0
whenever we need to consider two general CNLS equations.

Define a pair of waveforms by

fm(ξ) = [
1 − C2

mg
2
m(ξ)

]1/2
m = 1, 2 (2)

in which gm(ξ) is a Jacobian elliptic function sn(γ ξ), cn(γ ξ) or dn(γ ξ) of modulus k
(0 < k2 � 1), and where γ is a scaling parameter, C2

m is an arbitrary real constant in
the range 0 < C2

m � 1, ξ is an abbreviation for ξ ≡ t − z/v, and v is the common velocity of
the waves. We make the ansatz that equation (1) has solutions of the form given by

φ1(z, t) = A1f1(ξ)e1 = A1
[
1 − C2

1g
2
1(ξ)

]1/2
e1

φ2(z, t) = A2f2(ξ)e2 = A2
[
1 − C2

2g
2
2(ξ)

]1/2
e2

(3)

where A1 and A2 are the amplitudes of the two travelling waves, em is an abbreviation for

em ≡ eiθm ≡ exp(i[Kmz−
mt + χm(ξ)]) m = 1, 2

andKm and
m are the wave number and frequency shift of the mth wave, and χm(ξ) is a real
function of ξ . We shall present six possible analytic periodic solutions given in the form of
equation (2) with g1(ξ) and g2(ξ) given in table 1. It will be seen from the later analysis that
these six solutions can be divided into three groups: group I consists of one solution (1) or one
kind of ‘bright–bright’ (BB) periodic wavepair, group II consists of three solutions (2, 3, 4) or
three kinds of ‘grey–grey’ (GG) periodic wavepairs, and group III consists of two solutions
(5, 6) or two kinds of ‘bright–grey’ (BG) periodic wavepairs. A periodic wavepair of the form
given by f1(ξ) = g2(ξ) = dn(γ ξ) was first used by Lisak et al [9] following their study of
the bright–grey wavepair.

The derivation and a concise presentation of these analytic solutions are given in
appendix A, in which a useful comparison with the one-component nonlinear Klein–Gordon
equation is also given. Each of the six analytic solutions will be accompanied by six relations
or conditions that must be satisfied for the solution to be valid.

Denote

aj ≡ α′′
j v

−2 + β ′′
j j = 1, 2. (4)

The first two conditions that accompany each solution consist of the following two
equations that are the same for all six solutions:

v−1 = −2α′′
1K1v

−1 + β ′
1 − 2β ′′

1
1 = −2α′′
2K2v

−1 + β ′
2 − 2β ′′

2
2.

We now present each of the six possible solitary-wave solutions of equation (1) arranged
in the order given in table 1 in the form given by equation (3), and the expression for χj (ξ),
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followed by conditions 3–6 of the six conditions that accompany each solution. They are
then followed by the expressions for the amplitudes of the wavepair obtained by solving the
algebraic equations given by conditions 5 and 6.

Solution 1 (I, 1)

φ1 = A1
[
1 − C2

1 sn
2(γ ξ)

]1/2
exp(i[K1z−
1t + χ1(ξ)])

φ2 = A2
[
1 − C2

2 sn
2(γ ξ)

]1/2
exp(i[K2z−
2t + χ2(ξ)])

χj (ξ) = [(
1 − C2

j

)(
1 − C−2

j k2
)]1/2

∫ ξ [
1 − C2

j sn
2(γ ξ)

]−1
dξ

k2 � C2
j � 1 j = 1, 2

a−1
1

[
κ1 −K1 + β ′

1
1 − α′′
1K

2
1 − β ′′

1

2
1 + νR1A

2
2

(
1 − C2

2

/
C2

1

)] = [
1 − (

3C−2
1 − 1

)
k2]γ 2

a−1
2

[
κ2 −K2 + β ′

2
2 − α′′
2K

2
2 − β ′′

2

2
2 + νR2A

2
1

(
1 − C2

1

/
C2

2

)] = [
1 − (

3C−2
2 − 1

)
k2

]
γ 2

a−1
1 R1

(
A2

1 + νA2
2C

2
2

/
C2

1

) = 2C−2
1 k2γ 2

a−1
2 R2

(
A2

2 + νA2
1C

2
1

/
C2

2

) = 2C−2
2 k2γ 2.

The last two equations can be solved for A2
1 and A2

2, giving for ν2 �= 1,

A2
1 = 2C−2

1 k2γ 2(a1R
−1
1 − νa2R

−1
2

)/
(1 − ν2)

A2
2 = 2C−2

2 k2γ 2(a2R
−1
2 − νa1R

−1
1

)/
(1 − ν2);

and for ν2 = 1,

A2
1 + ν

(
C2

2

/
C2

1

)
A2

2 = 2C−2
1 k2γ 2a1R

−1
1 = 2νC−2

1 k2γ 2a2R
−1
2 .

Solution 2 (II, 1)

φ1 = A1
[
1 − C2

1cn
2(γ ξ)

]1/2
exp(i[K1z−
1t + χ1(ξ)])

φ2 = A2
[
1 − C2

2cn
2(γ ξ)

]1/2
exp(i[K2z−
2t + χ2(ξ)])

χj (ξ) = {(
1 − C2

j

)[
1 + C−2

j k2
(
1 − C2

j

)]}1/2
∫ ξ [

1 − C2
j cn

2(γ ξ)
]−1

dξ

0 < C2
j � 1 j = 1, 2

a−1
1

[
κ1 −K1 + β ′

1
1 − α′′
1K

2
1 − β ′′

1

2
1 + νR1A

2
2

(
1 − C2

2

/
C2

1

)] = [
1 +

(
3C−2

1 − 2
)
k2]γ 2

a−1
2

[
κ2 −K2 + β ′

2
2 − α′′
2K

2
2 − β ′′

2

2
2 + νR2A

2
1

(
1 − C2

1

/
C2

2

)] = [
1 +

(
3C−2

2 − 2
)
k2

]
γ 2

a−1
1 R1

(
A2

1 + νA2
2C

2
2

/
C2

1

) = −2C−2
1 k2γ 2

a−1
2 R2

(
A2

2 + νA2
1C

2
1

/
C2

2

) = −2C−2
2 k2γ 2.

The last two equations can be solved for A2
1 and A2

2, giving for ν2 �= 1,

A2
1 = −2C−2

1 k2γ 2(a1R
−1
1 − νa2R

−1
2

)/
(1 − ν2)

A2
2 = −2C−2

2 k2γ 2(a2R
−1
2 − νa1R

−1
1

)/
(1 − ν2);
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and for ν2 = 1,

A2
1 + ν

(
C2

2

/
C2

1

)
A2

2 = −2C−2
1 k2γ 2a1R

−1
1 = −2νC−2

1 k2γ 2a2R
−1
2 .

Solution 3 (II, 2)

φ1 = A1
[
1 − C2

1dn
2(γ ξ)

]1/2
exp(i[K1z−
1t + χ1(ξ)])

φ2 = A2
[
1 − C2

2dn
2(γ ξ)

]1/2
exp(i[K2z−
2t + χ2(ξ)])

χj (ξ) = {(
1 − C2

j

)[
k2 + C−2

j

(
1 − C2

j

)]}1/2
∫ ξ [

1 − C2
j dn

2(γ ξ)
]−1

dξ

0 < C2
j � 1 j = 1, 2

a−1
1

[
κ1 −K1 + β ′

1
1 − α′′
1K

2
1 − β ′′

1

2
1 + νR1A

2
2

(
1 − C2

2

/
C2

1

)] = [
k2 +

(
3C−2

1 − 2
)]
γ 2

a−1
2

[
κ2 −K2 + β ′

2
2 − α′′
2K

2
2 − β ′′

2

2
2 + νR2A

2
1

(
1 − C2

1

/
C2

2

)] = [
k2 +

(
3C−2

2 − 2
)]
γ 2

a−1
1 R1

(
A2

1 + νA2
2C

2
2

/
C2

1

) = −2C−2
1 γ 2

a−1
2 R2

(
A2

2 + νA2
1C

2
1

/
C2

2

) = −2C−2
2 γ 2.

The last two equations can be solved for A2
1 and A2

2, giving for ν2 �= 1,

A2
1 = −2C−2

1 γ 2
(
a1R

−1
1 − νa2R

−1
2

)/
(1 − ν2)

A2
2 = −2C−2

2 γ 2
(
a2R

−1
2 − νa1R

−1
1

)/
(1 − ν2);

and for ν2 = 1,

A2
1 + ν

(
C2

2

/
C2

1

)
A2

2 = −2C−2
1 γ 2a1R

−1
1 = −2νC−2

1 γ 2a2R
−1
2 .

Solution 4 (II, 3)

φ1 = A1
[
1 − C2

1cn
2(γ ξ)

]1/2
exp(i[K1z−
1t + χ1(ξ)])

φ2 = A2
[
1 − C2

2dn
2(γ ξ)

]1/2
exp(i[K2z−
2t + χ2(ξ)])

χ1(ξ) = {(
1 − C2

1

)[
1 + C−2

1 k2(1 − C2
1

)]}1/2
∫ ξ [

1 − C2
1cn

2(γ ξ)
]−1

dξ

χ2(ξ) = {(
1 − C2

2

)[
k2 + C−2

2

(
1 − C2

2

)]}1/2
∫ ξ [

1 − C2
2dn

2(γ ξ)
]−1

dξ

0 < C2
j � 1 j = 1, 2

a−1
1

{
κ1 −K1 + β ′

1
1 − α′′
1K

2
1 − β ′′

1

2
1 + νR1A

2
2

[
1 − C2

2 + k2(C2
2 − C2

2

/
C2

1

)]}
= [

1 +
(
3C−2

1 − 2
)
k2]γ 2

a−1
2

{
κ2 −K2 + β ′

2
2 − α′′
2K

2
2 − β ′′

2

2
2 − νR2k

−2C2
1C

−2
2 A2

1

[
1 − C2

2 + k2(C2
2 − C2

2

/
C2

1

)]}
= [(

3C−2
2 − 2

)
+ k2]γ 2

a−1
1 R1

(
A2

1 + νk2A2
2C

2
2

/
C2

1

) = −2C−2
1 k2γ 2

a−1
2 R2

[
A2

2 + νk−2A2
1C

2
1

/
C2

2

) = −2C−2
2 γ 2.
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The last two equations can be solved for A2
1 and A2

2, giving for ν2 �= 1,

A2
1 = −2C−2

1 k2γ 2(a1R
−1
1 − νa2R

−1
2

)/
(1 − ν2)

A2
2 = −2C−2

2 γ 2(a2R
−1
2 − νa1R

−1
1

)/
(1 − ν2);

and for ν2 = 1,

A2
1 + νk2

(
C2

2

/
C2

1

)
A2

2 = −2C−2
1 k2γ 2a1R

−1
1 = −2νC−2

1 k2γ 2a2R
−1
2 .

Solution 5 (III, 1)

φ1 = A1
[
1 − C2

1 sn
2(γ ξ)

]1/2
exp(i[K1z−
1t + χ1(ξ)])

φ2 = A2
[
1 − C2

2cn
2(γ ξ)

]1/2
exp(i[K2z−
2t + χ2(ξ)])

χ1(ξ) = [(
1 − C2

1

)(
1 − C−2

1 k2)]1/2
∫ ξ [

1 − C2
1 sn

2(γ ξ)
]−1

dξ

χ2(ξ) = {(
1 − C2

2

)[
1 + C−2

2 k2
(
1 − C2

2

)]}1/2
∫ ξ [

1 − C2
2cn

2(γ ξ)
]−1

dξ

k2 � C2
1 � 1 0 < C2

2 � 1

a−1
1

[
κ1 −K1 + β ′

1
1 − α′′
1K

2
1 − β ′′

1

2
1 + νR1A

2
2

(
1 − C2

2 + C2
2

/
C2

1

)]
= [

1 − (
3C−2

1 − 1
)
k2

]
γ 2

a−1
2

[
κ2 −K2 + β ′

2
2 − α′′
2K

2
2 − β ′′

2

2
2 + νR2A

2
1C

2
1C

−2
2

(
1 − C2

2 + C2
2

/
C2

1

)]
= [

1 +
(
3C−2

2 − 2
)]
γ 2

a−1
1 R1

(
A2

1 − νC2
2A

2
2

/
C2

1

) = 2C−2
1 k2γ 2

a−1
2 R2

(
A2

2 − νC2
1A

2
1

/
C2

2

) = −2C−2
2 k2γ 2.

The last two equations can be solved for A2
1 and A2

2, giving for ν2 �= 1,

A2
1 = 2C−2

1 k2γ 2
(
a1R

−1
1 − νa2R

−1
2

)/
(1 − ν2)

A2
2 = −2C−2

2 k2γ 2
(
a2R

−1
2 − νa1R

−1
1

)/
(1 − ν2);

and for ν2 = 1,

A2
1 − ν

(
C2

2

/
C2

1

)
A2

2 = 2C−2
1 k2γ 2a1R

−1
1 = 2νC−2

1 k2γ 2a2R
−1
2 .

Solution 6 (III, 2)

φ1 = A1
[
1 − C2

1 sn
2(γ ξ)

]1/2
exp(i[K1z−
1t + χ1(ξ)])

φ2 = A2
[
1 − C2

2dn
2(γ ξ)

]1/2
exp(i([K2z−
2t + χ2(ξ)])

χ1(ξ) = [(
1 − C2

1

)(
1 − C−2

1 k2)]1/2
∫ ξ [

1 − C2
1 sn

2(γ ξ)
]−1

dξ

χ2(ξ) = {(
1 − C2

2

)[
k2 + C−2

2

(
1 − C2

2

)]}1/2
∫ ξ [

1 − C2
2dn

2(γ ξ)
]−1

dξ

k2 � C2
1 � 1 0 < C2

2 � 1

a−1
1

[
κ1 −K1 + β ′

1
1 − α′′
1K

2
1 − β ′′

1

2
1 + νR1A

2
2

(
1 − C2

2 + k2C2
2

/
C2

1

)]
= [

1 − (
3C−2

1 − 1
)
k2]γ 2
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a−1
2

[
κ2 −K2 + β ′

2
2 − α′′
2K

2
2 − β ′′

2

2
2 + νR2k

−2A2
1C

2
1C

−2
2

(
1 − C2

2 + k2C2
2

/
C2

1

)]
= [

k2 +
(
3C−2

2 − 2
)]
γ 2

a−1
1 R1

(
A2

1 − νk2C2
2A

2
2

/
C2

1

) = 2C−2
1 k2γ 2

a−1
2 R2

(
A2

2 − νk−2C2
1A

2
1

/
C2

2

) = −2C−2
2 γ 2.

The last two equations can be solved for A2
1 and A2

2, giving for ν2 �= 1,

A2
1 = 2C−2

1 k2γ 2
(
a1R

−1
1 − νa2R

−1
2

)/
(1 − ν2),

A2
2 = −2C−2

2 γ 2
(
a2R

−1
2 − νa1R

−1
1

)/
(1 − ν2);

and for ν2 = 1,

A2
1 − νk2

(
C2

2

/
C2

1

)
A2

2 = 2C−2
1 k2γ 2a1R

−1
1 = 2νC−2

1 k2γ 2a2R
−1
2 .

The six conditions that accompany each solution may at first sight seem to be complicated
because of the number. However, it is convenient to group them into three pairs and view
them as follows: the first two relations express the velocity v in terms ofKj and
j , j = 1, 2;
the next two relations express Kj and 
j in terms of A2

j and C2
j ; and the last two equations

express A2
j in terms of C2

j and γ 2. By considering C2
j and γ 2 as the independent variables,

we can work backwards starting from the last two equations to determine A2
j ,Kj and 
j in

terms of them. These relations involve the constant parameters that appear in equation (1).
Together with the requirement that A2

1 and A2
2 must be >0, these six relations place, among

other things, restrictions on the range of parameters and validity of solutions.
To complete the analytic expressions for the above six solutions, we note that χj(ξ) is

an incomplete elliptic integral of the third kind that is expressible analytically in terms of
the elliptic θ -functions [26]. In particular, χj(ξ) can be expressed simply for certain specific
values of C2

j , and we present them below:

(1) For gj (ξ) = sn(γ ξ, k) or fj (ξ) = [
1 − C2

j sn
2(γ ξ, k)

]1/2
, with C2

j = k, χj(ξ) =
1
2

{(
1 − C2

j

)
γ ξ + tan−1

[(
1 − C2

j

)
sn(γ ξ,k)

cn(γ ξ,k)dn(γ ξ,k)

]}
.

(2) For gj (ξ) = cn(γ ξ, k) or fj (ξ) = [
1 − C2

j cn
2(γ ξ, k)

]1/2
, with C2

j = k/(1 + k),

χj(ξ) = 1
2

{
γ ξ

1−C2
j

+ tan−1
[

1
1−C2

j

sn(γ ξ,k)

cn(γ ξ,k)dn(γ ξ,k)

]}
.

(3) For gj (ξ) = dn(γ ξ, k) or fj (ξ) = [
1 − C2

j dn
2(γ ξ, k)

]1/2
, with C2

j = 1/(1 + k),

χj(ξ) = 1
2

{
γ ξ

C2
j

+ tan−1
[

1
C2
j

sn(γ ξ,k)

cn(γ ξ,k)dn(γ ξ,k)

]}
.

The special cases of fj (ξ) = sn(γ ξ), cn(γ ξ) or dn(γ ξ) can be easily obtained from
those of gj (ξ) = sn(γ ξ), cn(γ ξ) or dn(γ ξ) by noting the relations sn2(γ ξ) + cn2(γ ξ) = 1
and k2sn2(γ ξ) + dn2(γ ξ) = 1, and by assigning special values such as 1 or k2 to C2

j . Note
that for the case g1(ξ) = g2(ξ), the two waveforms f1(ξ) and f2(ξ) need not be the same
in general depending on the values of C2

1 and C2
2 . For example, for C2

1 = 1, C2
2 = k2

for g1(ξ) = g2(ξ) = sn(γ ξ), we have two different waveforms f1(ξ) = cn(γ ξ) and
f2(ξ) = dn(γ ξ).

By noting that for k2 = 1, sn(γ ξ, 1) = tanh(γ ξ), cn(γ ξ, 1) = dn(γ ξ, 1) = sech(γ ξ),
the six solutions coalesce into three following solutions A, B and C, where solution 1 becomes
solution A, solutions 2, 3 and 4 become solution B, and solutions 5 and 6 become solution C:

Solution A

φ1 = A1 sech(γ ξ) exp(i(K1z−
1t))

φ2 = A2 sech(γ ξ) exp(i(K2z−
2t)).
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Solution B

φ1 = A1
[
1 − C2

1 sech2(γ ξ)
]1/2

exp(i[K1z−
1t + χ1(ξ)])

φ2 = A2
[
1 − C2

2 sech2(γ ξ)
]1/2

exp(i[K2z−
2t + χ2(ξ)])

χj (ξ) = (
C−2
j − 1

)−1/2
∫ ξ [

1 − C2
j sech2(γ ξ)

]−1
dξ

=
{√

1−C2
j

Cj
γ ξ + tan−1

[
Cj√
1−C2

j

tanh(γ ξ)

]}

0 < C2
j � 1 j = 1, 2.

Solution C

φ1 = A1 sech(γ ξ) exp(i(K1z−
1t))

φ2 = A2
[
1 − C2

2 sech2(γ ξ)
]1/2

exp(i[K2z−
2t + χ2(ξ)])

χ2(ξ) =
{√

1−C2
2

C2
γ ξ + tan−1

[
C2√
1−C2

2

tanh(γ ξ)

]}

0 < C2
2 � 1.

These three solutions are the bright–bright, grey–grey and bright–grey non-periodic
solitary wavepairs. Note that while we have the grey non-periodic waveform

[
1 −

C2
j sech2(γ ξ)

]1/2
with C2

j � 1, we do not have a non-periodic waveform represented by[
1−C2

j tanh2(γ ξ)
]1/2

forC2
j < 1 because of the restrictionC2

j � k2 (see solutions 1, 5 and 6),

and if we set C2
j = k2 = 1,

[
1 − C2

j tanh2(γ ξ)
]1/2

becomes the bright non-periodic solitary
waveform sech(γ ξ), and χj(ξ) = 0. The reduction to three special solutions for k2 = 1 and
the propagation possibilities to be discussed for the wavepairs given by the six solutions make
it convenient to classify them into three groups: group I consists of one kind of bright–bright
(BB) periodic wavepair given by solution 1; group II consists of three kinds of grey–grey
(GG) periodic wavepair given by solutions 2, 3 and 4; and group III consists of two kinds of
bright–grey (BG) wavepair given by solutions 5 and 6. It will be seen later that it is sometimes
useful to add a fourth group that consists of two kinds of grey–bright (GB) wavepair even
though they are simply the bright–grey wavepairs in reverse order.

The expressions for A2
1 and A2

2 given by solving the fifth and sixth conditions that
accompany each solution and the simple consideration that A2

1 and A2
2 must be >0 can be

used to sort out the permitted solutions for the given parameters αs, βs, κs, Rs and ν in
equation (1). To be specific, let us assume that

α′′
1 = α′′

2 = 0 R1 > 0 R2 > 0.

We now have two CNLS equations. Remembering that β ′′ > 0 and β ′′ < 0 correspond to
the anomalous and normal GVD regimes respectively, we present, in appendix B, the list of
and conditions for possible propagation of the three groups of wavepairs in the four regimes
characterized by (i) β ′′

1 > 0, β ′′
2 > 0; (ii) β ′′

1 > 0, β ′′
2 < 0; (iii) β ′′

1 < 0, β ′′
2 > 0; and

(iv) β ′′
1 < 0, β ′′

2 < 0; for −∞ < ν < +∞. The four regimes will be denoted for convenience
by (++), (+−), (−+), (−−).

If we restrict ourselves to the physically applicable values of ν � 0 (or 2
3 � ν � 2 to be

precise), then the list in appendix B gives six types of possible propagations:

(1) BB in (++) for ν � 0.
(2) GG in (−−) for ν � 0.
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(3) BG in (++) for ν > 0.
(4) BG in (+−) for 0 � ν < 1.
(5) BG in (−+) for ν > 1.
(6) BG in (−−) for ν > 0.

It is seen that the six types of propagation consist of one type of propagation involving
group I wavepair (bright–bright), one type of propagation involving group II wavepairs (grey–
grey), but four types of propagation involving group III wavepairs (bright–grey), i.e while the
bright–bright and grey–grey wavepairs are restricted to propagate in the anomalous–anomalous
and normal–normal GVD regimes respectively, the bright–grey wavepairs are seen to be able
to propagate in any one of the four possible combinations of anomalous and normal GVD
regimes for the two waves of the wavepair (subject to the conditions given in appendix B).
Note the different range permitted for ν for possibilities 4 and 5.

The apparent ‘asymmetry’ above is caused by restricting our consideration to ν � 0.
Expanding consideration of equation (1) to include negative as well as positive values of ν is
not only of mathematical interest (such as the integrability of the equations discussed in [23]
and [24]), but also serves to provide a better perspective on the number of possibilities and
the totality of analytic solutions that may play a role in future physical applications. Thus
if we consider the case for ν � 0, then it can be seen from appendix B that we have in this
case nine types of possible propagation that consist of four types of propagation involving
group I wavepair, four types of propagation involving group II wavepairs and only one type
of propagation involving group III wavepairs, as follows:

1–4. BB in (++), (+−), (−+), (−−), for −1 < ν � 0, ν < 0, ν < 0, ν < −1
respectively.
5–8. GG in (++), (+−), (−+), (−−), for ν < −1, ν < 0, ν < 0,−1 < ν � 0
respectively.
9. BG in (+−), for ν � 0.

The ‘symmetry’ between ν � 0 and ν � 0 becomes even more apparent if we list grey–
bright as well as bright–grey wavepairs in the counts as presented in table 2. It is seen that if
we count the wavepairs BB, GG, BG and GB as shown in table 2, then there are ten possible
propagations for ν � 0 (second column) and ten for ν � 0 (third column). Of these, BG and
GB wavepairs account for eight possible propagations for ν � 0, and BB and GG wavepairs
account for eight possible propagations for ν � 0. The fourth column combines columns 2
and 3, and shows what range of values of ν between −∞ and +∞ permits propagation of the
given wavepairs in the given GVD regimes. The fifth column lists which of the two special
values of ν = +1 or −1 permits propagation for the given wavepairs in the given GVD regimes.
The numbers of possible propagations for ν � 0 and ν � 0, ν > 1 and ν < −1, ν < 1 and
ν > −1, as well as for the special values ν = +1 and −1, are seen to reflect the symmetry.

After obtaining A2
1 and A2

2 in terms of C2
1 and C2

2 and γ 2, we can proceed to obtain
K1,K2,
1 and 
2 in terms of A2

1, A
2
2, C

2
1 , C

2
2 , γ

2 and v, using conditions 1 to 4 that
accompany each solution. We illustrate this with the solution given by Trillo et al [6] that
corresponds to a special case of solution C. We interchange the indices 1 and 2 for solution 5
or 6 and set k2 = 1 so that we consider a dark–bright wavepair propagating in the anomalous–
normal regimes β ′′

1 > 0, β ′′
2 < 0 to coincide with that given in [3] and [6], and then we set

α′′
1 = α′′

2 = κ1 = κ2 = 0, ν = 2, C2
1 = 1. Also we note that β ′

1 = β ′
2 = 0 is assumed in

[6], but β ′
1 = β ′

2 = 1/vg is assumed in [3] (section 7.3.1), where vg is the group velocity of
the wavepair. Since the results given in both [3] and [6] appeared to have a small error in
the expression for K2, we present below the complete expressions for A2

1, A
2
2,K1,K2 and v



7316 F T Hioe

Table 2. Possible propagations in the GVD regimes characterized by (β ′′
1 , β

′′
2 ) for four groups of

wavepairs BB, GG, BG, GB.

(β ′′
1 , β

′′
2 ) ν � 0 ν � 0 ν ν = ±1

(i) (++)
BB ν � 0 −1 < ν � 0 ν > −1 ν = +1
GG ν < −1 ν < −1
BG ν > 0 ν > 0 ν = +1
GB ν > 0 ν > 0 ν = +1

(ii) (+−)
BB ν < 0 ν < 0 ν = −1
GG ν < 0 ν < 0 ν = −1
BG 0 � ν < 1 ν � 0 ν < 1 ν = −1
GB ν > 1 ν > 1

(iii) (−+)
BB ν < 0 ν < 0 ν = −1
GG ν < 0 ν < 0 ν = −1
BG ν > 1 ν > 1
GB 0 � ν < 1 ν � 0 ν < 1 ν = −1

(iv) (−−)
BB ν < −1 ν < −1
GG ν � 0 −1 < ν � 0 ν > −1 ν = +1
BG ν > 0 ν > 0 ν = +1
GB ν > 0 ν > 0 ν = +1

for this special case of solution C for which φ1 = A1 tanh(γ ξ) exp(i(K1z − 
1t)), φ2 = A2

sech(γ ξ) exp(i(K2z −
2t)):

A2
1 = (

2β ′′
1R

−1
1 − 4β ′′

2R
−1
2

)
γ 2

/
3 A2

2 = (
4β ′′

1R
−1
1 − 2β ′′

2R
−1
2

)
γ 2

/
3

K1 = β ′
1
1 − β ′′

1

2
1 + R1A

2
1 K2 = β ′

2
2 − β ′′
2


2
2 + R2A

2
2 − β ′′

2γ
2

v−1 = β ′
1 − 2β ′′

1
1 = β ′
2 − 2β ′′

2
2.

The simple relationships 2R2A
2
1 − R2A

2
2 = −2β ′′

2γ
2 and 2R1A

2
2 − R1A

2
1 = 2β ′′

1γ
2 can

be used to give alternative expressions. As was pointed out in [3, 6], a striking feature of
this solitary wavepair is that the dark solitary wave propagates in the anomalous GVD regime
(β ′′

1 > 0) whereas the bright solitary wave propagates in the normal GVD regime (β ′′
2 < 0),

exactly opposite of the behaviour expected in the absence of cross-phase modulation. As was
noted in our discussion of possibility 5 of our more general periodic bright–grey solutions,
a necessary condition for this so-called inverted bright–dark wavepair is ν > 1, a condition
that was not explicitly stated previously. As for the so-called normal bright–grey wavepair
[8], a necessary condition is 0 � ν < 1. All this and other cases, including all the necessary
conditions, are contained in the general results we present in appendix B.

3. Special case 1: the symmetric case

For certain special cases of equation (1) involving certain specific parameters characterized by
α′′
j , β

′
j , β

′′
j , Rj and ν, there are other types of analytic solutions in addition to the six possible

analytic solutions given in the previous section. There are two special cases we want to
discuss, the first of which, the ‘symmetric case’ [15]2 is discussed in this section.
2 All expressions on the right-hand sides of equations (4a)–(4c) should be multiplied by γ 2 in this paper.
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The ‘symmetric’ case for equation (1) refers to the case in which

κ1 = κ2 α′′
1 = α′′

2 β ′
1 = β ′

2 β ′′
1 = β ′′

2 R1 = R2 ν = 1. (5)

In this case, the solution of equation (1) can be expressed more generally as a superposition
solution given by

φm(z, t) =
2∑
j=1

Amjfj (ξ) exp{i[Kjz−
jt + χj(ξ)]} m = 1, 2 (6)

where A11A12 + A21A22 = 0 without necessarily requiring any one of the As to be equal to
zero. Here, the six possible analytic solutions of equation (1) for this symmetric case are given
by equation (6) in which the pair of waveforms fj (ξ), j = 1, 2, is given by equation (2), with
the pair of gj (ξ) given by those presented in table 1 that belong to the same solution. If we
define

A2
1 ≡ A2

11 +A2
21 A2

2 ≡ A2
12 + A2

22

we find that the six conditions that accompany each solution given by equation (6) are exactly
those that accompany solutions 1–6 in section 2. The six superimposed wavepairs can be
divided into three groups, as in section 2, so are their possible propagations in various GVD
regimes.

These superposition solutions for the special case in which fj (ξ) is sn(γ ξ), cn(γ ξ) or
dn(γ ξ) and χj(ξ) = 0 were given by the author in [15]. Note that these superposition
solutions, similar to those for the three- and five-level systems [27] for a somewhat related
problem, involve superpositions of generally two different elliptic functions with arbitrary
constants, and they should be distinguished from the ‘superposition’ solutions given by
Cooper et al [28] for various (one-component) nonlinear equations that involve the same
elliptic functions that are centred at equally spaced points with no arbitrary constants. As
Khare and Sukhatme [29] showed in a subsequent paper, their ‘superposition’ is in fact a
remarkable generalization of Landen’s quadratic transformation formulae for Jacobian elliptic
functions.

4. Special case 2: the L-set

The second special case of equation (1) we shall discuss is referred to as the L-set [21] as
its solutions can be analytically represented in terms of Lamé functions [30]. The L-set is
interesting mathematically as the CNLS equations belonging to this set pass the Painlevé
test [25]. For N CNLS equations, the L-set is given by the following (normalized) coupled
equations:

iφmz ± βmφmtt + κmφm ±

 N∑
j=1

βmβj |φj |2

φm = 0 m = 1, . . . , N (7)

where βj = +1 or −1, j = 1, . . . , N . If we make the substitution

φm(z, t) = ψm(t) eiωmz (8)

where ωm are real constants and ψm(t) are real functions of t only, then the coupled equations
for ψm(t) are

ψmtt + cmψm +


 N∑
j=1

βjψ
2
j


ψm = 0 m = 1, . . . , N (9)



7318 F T Hioe

where

cm = ±βm(κm − ωm). (10)

To eliminate the permutation symmetry, we arrange equation (9) such that

c1 � c2 � · · · � cN (11)

so that only one of the two choices (the upper or lower sign) in equations (7) and (10)
corresponds to the equations of motions for equation (9). The travelling waves can be
constructed (see appendix C) by substituting the solutions ψm from equation (9) into
equation (8), and replacing φm(z, t) by

φm(z, t − z/v) exp
{±iβ−1

m [t − z/(2v)]/(2v)
}

(12)

where v is the common velocity of the waves.
We consider equation (7) with the upper signs since the lower signs give no new physics,

and we characterize the interaction parameters of equation (7) by the array (β1, β2, . . . , βN),
where βj = +1 or −1 (or denoted simply by + or −), and refer to each of the 2N arrays as an
interaction type. This special set of N CNLS equations possesses analytic solutions [21] for
φm(z, t) that can be expressed in terms of Lamé functions [30] of order n � N .

We use Lamé equation of order n expressed in the form

d2f/dτ 2 + [h− n(n + 1)k2sn2(τ, k)]f = 0. (13)

We refer to the polynomial solutions (that are doubly periodic) of the Lamé equation
as Lamé functions, and we shall number the 2n + 1 Lamé functions of order n,
f
(n)

1 , f
(n)

2 , . . . , f
(n)

2n+1, in the order of numbering their corresponding eigenvalues h(n)m arranged
in descending order h(n)1 > h

(n)
2 > · · · > h

(n)
2n+1. The use of Lamé function ansatz described in

[18] gives the solutions of equation (9) in terms of Lamé functions in the form

ψm(t) = Amf
(n)
p (γ t) (14)

where Am is the ‘amplitude’ of the mth component, f (n)p is the pth Lamé function of order n,
and γ is a scaling parameter. To obtain the solutions of equation (9) using the Lamé function
ansatz, we assume equation (14) and express the square of the j th Lamé function of order n
in a power series in s ≡ sn(τ, k) as

[
f
(n)
j (τ )

]2 =
n+1∑
i=1

a
(n)
ij s

2(i−1) j = 1, . . . , 2n + 1

and substitute these into equation (9). Comparing them with equation (13) gives a set of
algebraic equations that need to be satisfied and give the required values for the amplitudesAm
and the required values of cm for equation (9). An N-combination

(
f (n)p , f (n)q , . . . , f (n)s

)
that

gives an analytic solution for the N components (ψ1, ψ2, . . . , ψN) will be represented simply
by (p, q, . . . , s)n, where equation (11) implies p � q � · · · � s. We first renumber the 2n + 1
eigenvalues of the Lamé equation h(n)1 , h

(n)

2 , . . . , h
(n)

2n+1, as h(n)1 , h
(n)

2 , h
(n)

2′ , . . . , h
(n)

n+1, h
(n)

(n+1)′ , and

the corresponding Lamé functions f (n)1 , f
(n)

2 , . . . , f
(n)

2n+1, as f (n)1 , f
(n)

2 , f
(n)

2′ , . . . , f
(n)
n+1, f

(n)

(n+1)′ ,
i.e. we group them in pairs except the first one. This numbering system has been shown [21]
to be very useful for identifying the possible combinations that are solutions of a given set of
interaction parameters.

An N-combination
(
f (n)p , f (n)q , f

(n)

r ′ , . . . , f (n)s

)
for example, will now be represented by

(p, q, r ′, . . . , s)n, where p � q � r � · · · � s.
The 2n + 1 Lamé functions f (n)m (τ ) and their eigenvalues h(n)m satisfy the Lamé

equation (13), and we list them according to the subscriptm= 1, 2, 2′, 3, 3′, . . . , n+ 1, (n+ 1)′

for n = 1 and 2, and they are given in table 3.
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Table 3. Lamé functions of order n = 1 and 2.

n = 1

h
(1)
1 = 1 + k2, h

(1)
2 = 1, h(1)2′ = k2,

f
(1)
1 = sn(τ ), f

(1)
2 = cn(τ ), f

(1)
2′ = dn(τ ).

n = 2

h
(2)
1,3′ = 2(1 + k2)± 2

√
1 − k2 + k4,

h
(2)
2 = 4 + k2, h

(2)
2′ = 1 + 4k2, h

(2)
3 = 1 + k2,

f
(2)
1,3′ = 1

3 (1 + k2 ∓ √
1 − k2 + k4)− k2sn2(τ ),

f
(2)
2 = sn(τ )cn(τ ), f

(2)
2′ = sn(τ )dn(τ ), f

(2)
3 = cn(τ )dn(τ ).

Table 4. Solutions of equation (9) in terms of combinations of Lamé functions listed in table 3.

Interaction type Combination

N = 1
(−) (1)1
(+) (2)1, (2′)1

N = 2
(−−) (1, 2)2, (1, 2′)2, (1, 1)1, (1, 2)1, (1, 2′)1
(−+) (1, 3)2, (1, 3′)2, (3, 3′)2,

(1, 1)1, (1, 2)1, (1, 2′)1, (2, 2)1, (2, 2′)1, (2′, 2′)1
(+−) (2, 2′)2, (1, 1)1, (2, 2)1, (2, 2′)1, (2′, 2′)1
(++) (2, 3)2, (2, 3′)2, (2′, 3)2, (2′, 3′)2,

(1, 2)1, (1, 2′)1, (2, 2)1, (2, 2′)1, (2′, 2′)1

We list in table 4, for N = 1 and 2, the 2N interaction types, (β1, β2, . . . , βN ), and the
corresponding combinations

(
f (n)p , f (n)q , . . . , f (n)s

)
or (p, q, . . . , s)n, for n = 1, . . . , N , for

the analytic solutions for the N components (ψ1, ψ2, . . . , ψN). The amplitudes As needed
for equation (14) and the required cs for equation (9), are given in appendix D. They give the
complete list of analytic solutions for equation (9), and, using equations (8) and (12), they
give the travelling wave solutions φ1 and φ2 for equation (7), for N = 1 and 2.

The solutions involving Lamé functions of order 1 forN = 2 can be checked to be simply
the special cases of the more general solutions given for equation (1) in section 2, by noting
equation (3) and identifying

ωm = Km + βm
2
m.

It will be noted that for a given interaction type characterized by (β1, β2), not every
combination of Lamé functions of order n = 1 is a possible solution, and this can be checked
to be consistent with the conditions that must be satisfied for every solution in section 2, and
it is also exhibited by the last column of table 2.

On the other hand, the ten analytic solutions given by Lamé functions of order n = 2
for this special L-set of N = 2 are not given by the solutions in section 2. Although
these solutions for the interaction types (−−) and (++) were known previously (some were
expressed differently [13–19]), the extension to interaction types (−+) and (+−) ‘completes’
the analytic solutions for the set the relation of which to the set of CNLS equations that pass
the Painlevé test [25] was first pointed out in [21].

The list of solutions given in table 4 and appendix D gives a good overview of the possible
analytic solutions for the pairs of coupled waves for the L-set.
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We have, for example, from tables 3 and 4, equations (8) and (12), for the interaction type
(++) for which both waves propagate in the anomalous GVD regime, a dark–bright wavepair
given by the combination of Lamé functions of order 1, (1, 2)1, given by

φ1 = A1sn{γ (t − z/v)} exp

{
i

[
t

2v
−

(
1

4v2
− ω1

)
z

]}

φ2 = A2cn{γ (t − z/v)} exp

{
i

[
t

2v
−

(
1

4v2
− ω2

)
z

]}

which can be obtained as a special case of solution 5 from section 2.
The same interaction type (++) allows four analytic solutions given by Lamé functions of

order 2. For example, we have a second-order wavepair given by (2, 3)2 that consists of

φ1(z, t) = A1sn{γ (t − z/v)}cn{γ (t − z/v)} exp

{
i

[
t

2v
−

(
1

4v2
− ω1

)
z

]}

φ2(z, t) = A2cn{γ (t − z/v)}dn{γ (t − z/v)} exp

{
i

[
t

2v
−

(
1

4v2
− ω2

)
z

]}
.

For the ‘mixed’ interaction type (+−), for which the first wave of the wavepair propagates
in the anomalous GVD regime and the second wave in the normal GVD regime, a bright–bright
wavepair given by the combination of Lamé functions of order 1, (2, 2′)1, is

φ1 = A1cn{γ (t − z/v)} exp

{
i

[
t

2v
−

(
1

4v2
− ω1

)
z

]}

φ2 = A2dn{γ (t − z/v)} exp

{
−i

[
t

2v
−

(
1

4v2
+ ω2

)
z

]}

which is a special case of solution 1 in section 2.
The same interaction type allows one second-order wavepair given by the combination of

Lamé functions of order 2, (2, 2′)2 that consists of

φ1(z, t) = A1sn{γ (t − z/v)}cn{γ (t − z/v)} exp

{
i

[
t

2v
−

(
1

4v2
− ω1

)
z

]}

φ2(z, t) = A2sn{γ (t − z/v)}dn{γ (t − z/v)} exp

{
−i

[
t

2v
−

(
1

4v2
+ ω2

)
z

]}
.

The amplitudes As and the parameters ωs for the above waves are all given in
appendix D.

5. Coupled-mode equations

The propagation equations governing evolution of the two polarization components along a
fibre can take several forms. We consider two of these forms that can be reduced to the forms
given in the previous sections.

(1) Consider the following coupled equations:

i�1Z ±�1T T + η�1 + σ�2 + (|�1|2 + ν|�2|2)�1 = 0

i�2Z ±�2T T + η�2 + σ�1 + (ν|�1|2 + |�2|2)�2 = 0.
(15)

It is known [13, 14] that by substituting

�1,2 = φ1 ± iφ2 (16)
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and

z = (ν + 1)Z t =
√
ν + 1T (17)

equation (15) can be transformed into

iφmz ± φmtt + κmφ1 + p(|φ1|2 + |φ2|2)φm + q
(
φ2

1 + φ2
2

)
φ∗
m = 0 m = 1, 2 (18)

where p = 2/(ν + 1), q = (ν − 1)/(ν + 1), (note that p + q = 1), κ1 = (η + σ)/(ν + 1),

κ2 = (η − σ)/(ν + 1). The case η = 0, p = 2
3 , q = 1

3 , ν = 2, κ1 = −κ2 = σ/3, is applicable
to birefringent fibre [1–3].

(2) Consider the following coupled equations,

i�mz ±�mtt + p(|�1|2 + |�2|2)�m + q
(
�2

1 e2iκ1z +�2
2 e2iκ2z

)
�∗
m e−2iκmz = 0

m = 1, 2 (19)

where p + q = 1. It is also known [4, 5] that they can also be transformed into
equation (18) by the substitutions

�m = φm e−iκmz m = 1, 2. (20)

Thus for both equations (15) and (19), we may consider equation (18) as a starting point.
By making the substitution φm(z, t) = ψm(t) eiωmz, where ωm is a real constant and ψm(t) are
real functions of t only, the following coupled equations for ψm(t) are obtained,

±ψmtt + cmψm +
(
ψ2

1 + ψ2
2

)
ψm = 0 m = 1, 2 (21)

where cm = κm − ωm. Equation (21) is a special case of equation (9) for which the analytic
solutions are given in appendix D.

6. Summary

We have presented the following results:

(1) A set of six analytic solutions for a general set of two CNKG equations, equation (1). They
are classified into three groups of periodic wavepairs: one kind of bright–bright, three
kinds of grey–grey and two kinds of bright–grey wavepairs. All six analytic solutions
are new even though some special cases of them are well known. The possibilities of
these wavepairs propagating in various combinations of anomalous and normal GVD
regimes for the case of two CNLS equations are presented with explicit conditions that
are applicable not only for the physically applicable regime ν > 0 but also for the
(presently) unphysical regime ν < 0. Consideration of the entire range of ν gives us a
better perspective about the symmetry regarding the possible propagation of wavepairs
that are of groups I and II (bright–bright and grey–grey) and of those that are of groups
III (bright–grey).

(2) A new superposition solution for a special case of equation (1) which we called the
symmetric case.

(3) Ten additional analytic solutions in terms of Lamé functions of order 2 for another special
case of two CNLS equations which we called the L-set . While only four of these solutions
that have ‘mixed’ interactions are new, their inclusion completes the analytic solutions
for the set that passes the Painlevé test.

The stability of some special cases of our periodic wavepairs that are non-periodic has been
studied [12], but a systematic stability analysis of the more general periodic solitary wavepairs
has not been done. The richness and ‘completeness’ of these periodic solitary wavepairs should
invite more theoretical study of their stability property, as well as their experimental production
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and testing similar to that [31] for the periodic waves that are solutions of Bloch–Maxwell
equations.
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Appendix A

In this appendix, we first consider a one-component nonlinear Klein–Gordon equation given
by

iφz + α′′φzz + iβ ′φt + β ′′φtt + κφ + R|φ|2φ = 0 (A.1)

and describe its analytic solitary-wave solutions, as it is instructive to see, by comparison,
their difference with the coupled solitary-wave solutions of the two-component CNKG
equations (1).

We let φ(z, t) = ρ(z, t) eiθ(z,t), j = 1, 2, and substitute this into equation (A.1).
Separating out the real and imaginary parts, we get two differential equations. By assuming
that ρ = ρ(ξ) and θ = Kz − 
t + χ(ξ), where ξ ≡ t − z/v, and making a transformation
from z, t to ξ such that ∂/∂t = d/dξ, ∂/∂z = −v−1d/dξ , then choosing v such that

v−1 = −2α′′Kv−1 + β ′ − 2β ′′
 (A.2)

implies that dχ/dξ = (const)/ρ2(ξ). This choice of v also results in an ordinary second-
order differential equations (with respect to ξ ) for ρ(ξ). Now letting ρ(ξ) = Af (ξ) =
A[1 − C2g2(ξ)]1/2, where

g = sn(γ ξ), cn(γ ξ) or dn(γ ξ) (A.3)

results in a differential equation for f in the form

d2f/dξ2 + bf + cf 3 − df−3 = 0. (A.4)

Substituting f (ξ) = [1−C2g2(ξ)]1/2 into the above equation and solving a set of algebraic
equations give two equations that relate various parameters, and the constant appearing in
dχ/dξ is identified with d1/2A2, i.e. we have

dχ/dξ = d1/2A2/ρ2(ξ).

The equations or conditions that accompany each solution can be expressed more concisely
if we make the following notations.

Denote

a ≡ α′′v−2 + β ′′

b ≡ a−1(κ −K + β ′
− α′′K2 − β ′′
2)

c ≡ a−1RA2.
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The three possible solutions of equation (A.1) are now given by

φ(z, t) = A[1 − C2g2(ξ)]1/2 exp(i[Kz−
t + χ(ξ)]) (A.5)

where g(ξ) is given by equation (A.3), and

χ(ξ) = d1/2
∫ ξ

[1 − C2g2(ξ)]−1 dξ. (A.6)

Equation (A.2) is the first condition that accompanies each of these solutions. The
solutions, the second and third conditions that accompany each solution, and the d for χ(ξ),
can be expressed concisely as follows:

Solution 1. g = sn(γ ξ) for equation (A.5),

b = [1 − (3C−2 − 1)k2]γ 2

c = 2C−2k2γ 2

d = (1 − C2)(1 − C−2k2) k2 � C2 � 1.

Solution 2. g = cn(γ ξ) for equation (A.5),

b = [1 + (3C−2 − 2)k2]γ 2

c = −2C−2k2γ 2

d = (1 − C2)[1 + C−2k2(1 − C2)] 0 < C2 � 1.

Solution 3. g = dn(γ ξ) for equation (A.5),

b = [k2 + (3C−2 − 2)]γ 2

c = −2C−2γ 2

d = (1 − C2)[k2 + C−2(1 − C2)] 0 < C2 � 1.

The three solutions can be divided into two groups: group I consists of one kind of
bright periodic solitary wave (solution 1), and group II consists of two kinds of grey periodic
solitary wave (solutions 2 and 3). The condition given by the equation involving c can be
used to immediately identify the possible solutions for a given set of parameters given in
equation (A.1) by requiring that A2 must be > 0. Thus, for example, for α′′ = 0, and R > 0,
equation (A.1) with β ′′ > 0 (the anomalous GVD regime) allows solution 1 (the bright solitary
wave) but not solution 2 or 3 (the grey solitary wave); while equation (A.1) with β ′′ < 0 (the
normal GVD regime) allows solutions 2 and 3 (the grey solitary waves) but not solution 1. On
the other hand, it will be seen in the following that the two-component CNLS equations allow
more flexibilities and unexpected results.

Let us now consider the two-component CNKG equations (1) and outline the steps leading
to the analytic solutions of equation (1) which we present in section 2.

We assume φj(z, t) = ρj (z, t) eiθj (z,t), j = 1, 2, and substitute them into equation (1).
Separating out the real and imaginary parts, we get four differential equations. We assume
that ρj = ρj (ξ) and θj = Kjz − 
j t + χj(ξ), and make a transformation from z, t to ξ as
before. Then the choice of v such that

v−1 = −2α′′
1K1v

−1 + β ′
1 − 2β ′′

1
1 = −2α′′
2K2v

−1 + β ′
2 − 2β ′′

2
2 (A.7)

implies that dχj/dξ = (const)/ρ2
j (ξ). The two equations for v are the first two equations

that accompany each solution in section 2. This choice of v also results in two coupled
ordinary second-order differential equations for ρj (ξ). Now letting ρj (ξ) = Ajfj (ξ) =
A

[
1−C2

j g
2
j (ξ)

]1/2
,where gj are given in table 1, result in two uncoupled differential equations

for fj in the form

d2fj/dξ2 + bjfj + cjf 3
j − djf

−3
j = 0 j = 1, 2. (A.8)
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Substituting the gj or fj given in table 1 into equation (A.8) and solving a set of algebraic
equations give the four remaining conditions that accompany each solution: the left-hand
sides of the third, fourth, fifth and sixth equations are the expressions for b1, b2, c1 and c2

respectively, in the above equation, and the constant appearing in dχj/dξ is identified with
d

1/2
j A2

j , i.e. we have

dχj/dξ = d
1/2
j A2

j

/
ρ2
j (ξ).

These equations that accompany each solution can be expressed more concisely if we
make the following notations.

(1) For g1 = g2.

With aj given by equation (4), denote

b1 ≡ a−1
1

[
κ1 −K1 + β ′

1
1 − α′′
1K

2
1 − β ′′

1

2
1 + νR1A

2
2

(
1 − C2

2

/
C2

1

)]
b2 ≡ a−1

2

[
κ2 −K2 + β ′

2
2 − α′′
2K

2
2 − β ′′

2

2
2 + νR2A

2
1

(
1 − C2

1

/
C2

2

)]
c1 ≡ a−1

1 R1
(
A2

1 + νA2
2C

2
2

/
C2

1

)
c2 ≡ a−1

2 R2
(
A2

2 + νA2
1C

2
1

/
C2

2

)
.

(2) For g1 �= g2.

We express the relationship betweenρ1(ξ)and ρ2(ξ) in the form ρ2
2 + ερ2

1 = E.

Denote

b1 ≡ a−1
1

(
κ1 −K1 + β ′

1
1 − α′′
1K

2
1 − β ′′

1

2
1 + νR1E

)
b2 ≡ a−1

2

(
κ2 −K2 + β ′

2
2 − α′′
2K

2
2 − β ′′

2

2
2 + νR2ε

−1E
)

c1 ≡ a−1
1 R1A

2
1(1 − νε)

c2 ≡ a−1
2 R2A

2
2(1 − νε−1).

(i) For g1(ξ) = cn(γ ξ), g2(ξ) = dn(γ ξ)

ε = −k2C2
2C

−2
1 A2

2A
−2
1 , E = A2

2

[
1 − C2

2 + k2
(
C2

2 − C2
2C

−2
1

)]
.

(ii) For g1(ξ) = sn(γ ξ), g2(ξ) = cn(γ ξ)

ε = C2
2C

−2
1 A2

2A
−2
1 , E = A2

2

(
1 − C2

2 + C2
2C

−2
1

)
.

(iii) For g1(ξ) = sn(γ ξ), g2(ξ) = dn(γ ξ)

ε = k2C2
2C

−2
1 A2

2A
−2
1 , E = A2

2

(
1 − C2

2 + k2C2
2C

−2
1

)
.

The six possible solutions of equation (1) are now given by equation (3), and the conditions
that accompany each solution in section 2 represented by the last four equations and the
expression for χj can be expressed concisely as follows:

(1) For gj = sn(γ ξ)

bj = [
1 − (

3C−2
j − 1

)
k2

]
γ 2

cj = 2C−2
j k2γ 2

dj = (
1 − C2

j

)(
1 − C−2

j k2
)

k2 � C2
j � 1.

(2) For gj = cn(γ ξ)

bj = [
1 +

(
3C−2

j − 2
)
k2]γ 2

cj = −2C−2
j k

2γ 2

dj = (
1 − C2

j

)[
1 + C−2

j k
2
(
1 − C2

j

)]
0 < C2

j � 1.
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(3) For gj = dn(γ ξ)

bj = [
k2 +

(
3C−2

j − 2
)]
γ 2

cj = −2C−2
j γ

2

dj = (
1 − C2

j

)[
k2 + C−2

j

(
1 − C2

j

)]
0 < C2

j � 1.

From the expressions for c1 and c2, and from the conditions given by the equations
involving c1 and c2, many more possibilities than the one-component case are seen to be
realizable, some of which are discussed in section 2. The mathematical origin that gives rise
to the many more possibilities compared to the one-component case is clearly shown from
above: the coupling between the two waves could result in an anomalous GVD regime β ′′

1 > 0
permitting a grey solitary wave with g1 = cn(γ ξ) or dn(γ ξ), and a normal GVD regime
β ′′

2 < 0 permitting a bright solitary wave with g2 = sn(γ ξ).

Appendix B

In this appendix, we present, assuming that α′′
1 = α′′

2 = 0, R1 and R2 both> 0 in equation (1),
the list of possible propagations of bright–bright (solution 1), grey–grey (solutions 2, 3 and 4)
and bright-grey (solutions 5 and 6) in various GVD regimes for the two individual waves of
the wavepair.

(1) Bright–bright periodic wavepair (solution 1):

(i) β ′′
1 > 0, β ′′

2 > 0: possible for ν > −1:

Always possible for − 1 < ν � 0.

Possible for 0 � ν < 1, if |ν|−1|β ′′
2 |R−1

2 > |β ′′
1 |R−1

1 > |ν||β ′′
2 |R−1

2 .

Possible for ν = 1, if |β ′′
1 |R−1

1 = |β ′′
2 |R−1

2 .

Possible for ν > 1, if |ν||β ′′
2 |R−1

2 > |β ′′
1 |R−1

1 > |ν|−1|β ′′
2 |R−1

2 .

(ii) β ′′
1 > 0, β ′′

2 < 0: Possible for ν < 0:

Possible for −1 < ν < 0, if |β ′′
1 |R−1

1 > |ν|−1|β ′′
2 |R−1

2 .

Possible for ν = −1, if |β ′′
1 |R−1

1 = |β ′′
2 |R−1

2 .

Possible for ν < −1, |β ′′
1 |R−1

1 < |ν|−1|β ′′
2 |R−1

2 .

(iii) β ′′
1 < 0, β ′′

2 > 0: possible for ν < 0:

Possible for − 1 < ν < 0, if |β ′′
1 |R−1

1 < |ν||β ′′
2 |R−1

2 .

Possible for ν = −1, if |β ′′
1 |R−1

1 = |β ′′
2 |R−1

2 .

Possible for ν < −1, if |β ′′
1 |R−1

1 > |ν||β ′′
2 |R−1

2 .

(iv) β ′′
1 < 0, β ′′

2 < 0: always possible for ν < −1.

(2) Grey–grey periodic wavepair (solutions 2, 3 and 4):

(i) β ′′
1 > 0, β ′′

2 > 0: always possible for ν < −1.

(ii) β ′′
1 > 0, β ′′

2 < 0: possible for ν < 0:

Possible for − 1 < ν < 0, if |β ′′
1 |R−1

1 < |ν||β ′′
2 |R−1

2 .

Possible for ν = −1, if |β ′′
1 |R−1

1 = |β ′′
2 |R−1

2 .

Possible for ν < −1, if |β ′′
1 |R−1

1 > |ν||β ′′
2 |R−1

2 .
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(iii) β ′′
1 < 0, β ′′

2 > 0: possible for ν < 0:

Possible for −1 < ν < 0, if |β ′′
1 |R−1

1 > |ν|−1|β ′′
2 |R−1

2 .

Possible for ν = −1, if |β ′′
1 |R−1

1 = |β ′′
2 |R−1

2 .

Possible for ν < −1, if |β ′′
1 |R−1

1 < |ν|−1|β ′′
2 |R−1

2 .

(iv) β ′′
1 < 0, β ′′

2 < 0: possible for ν > −1:

Always possible for −1 < ν � 0.

Possible for 0 � ν < 1, if |ν|−1|β ′′
2 |R−1

2 > |β ′′
1 |R−1

1 > |ν||β ′′
2 |R−1

2 .

Possible for ν = 1, if |β ′′
1 |R−1

1 = |β ′′
2 |R−1

2 .

Possible for ν > 1, if |ν|−1|β ′′
2 |R−1

2 < |β ′′
1 |R−1

1 < |ν||β ′′
2 |R−1

2 .

(3) Bright–grey periodic wavepair (solutions 5 and 6)

(i) β ′′
1 > 0, β ′′

2 > 0: possible for ν > 0:

Possible for 0 < ν < 1, if |β ′′
1 |R−1

1 > |ν|−1|β ′′
2 |R−1

2 .

Possible for ν = 1, if |β ′′
1 |R−1

1 = |β ′′
2 |R−1

2 .

Possible for ν > 1, if |β ′′
1 |R−1

1 < |ν|−1|β ′′
2 |R−1

2 .

(ii) β ′′
1 > 0, β ′′

2 < 0: possible for ν < 1:

Always possible for 0 � ν < 1.

Possible for −1 < ν � 0, if |ν|−1|β ′′
2 |R−1

2 > |β ′′
1 |R−1

1 > |ν||β ′′
2 |R−1

2 .

Possible for ν = −1, if |β ′′
1 |R−1

1 = |β ′′
2 |R−1

2 .

Possible for ν < −1, if |ν||β ′′
2 |R−1

2 > |β ′′
1 |R−1

1 > |ν|−1|β ′′
2 |R−1

2 .

(iii) β ′′
1 < 0, β ′′

2 > 0: always possible for ν > 1.

(iv) β ′′
1 < 0, β ′′

2 < 0: possible for ν > 0:

Possible for 0 < ν < 1, if |β ′′
1 |R−1

1 < |ν||β ′′
2 |R−1

2 .

Possible for ν = 1, if |β ′′
1 |R−1

1 = |β ′′
2 |R−1

2 .

Possible for ν > 1, if |β ′′
1 |R−1

1 > |ν||β ′′
2 |R−1

2 .

Appendix C

Galilean invariance for a standard nonlinear Schrödinger equation is well known [1–3, 6].
The same principle can be easily extended to a more general form of N coupled nonlinear
Schrödinger equations with arbitrary coefficients, but the precise form of this more general
form of transformation is not easily found in the published texts. We state below this general
form for present and future reference, a specific form of which was made use of in section 4.

If φm(z, t) is a solution of the equation

i∂φm/∂z + iβ ′
m∂φm/∂t + β ′′

m∂
2φm/∂t

2 + F(|φ1|2, . . . , |φN |2)φm = 0 m = 1, . . . , N

where F(|φ1|2, . . . , |φN |2) is an arbitrary function of |φ1|2, . . . , |φN |2, then φm(z, t − z/v)

exp
{
i 1

2β ′′
mv

[
t − (

1
2v + β ′

m)z
]}

is also a solution of the equation.
The Galilean transformation is useful for ‘boosting’ a stationary-wave solution of a general

set of N coupled nonlinear Schrödinger equations into a travelling-wave solution.
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Appendix D

In this appendix, we list the required As and cs for the analytic solutions of equation (9) in
terms of equation (14) and Lamé functions of order n for N = 1 and 2, n � N , given in
table 3. γ is a scaling parameter.

N = 1

(−) (1)1 A2
1 = 2k2γ 2 c1 = (1 + k2)γ 2

(+) (2)1 A2
1 = 2k2γ 2 c1 = (1 − 2k2)γ 2

(2′)1 A2
1 = 2γ 2 c1 = −(2 − k2)γ 2.

N = 2

(−−)
(1, 2)2

A2
1 = 18γ 2

−(2 − k2) + 2
√

1 − k2 + k4
A2

2 = 18k4γ 2

−(2 − k2) + 2
√

1 − k2 + k4

c1 = 2γ 2

−(2 − k2) + 2
√

1 − k2 + k4

{
2 − 2k2 + 5k4 − (2 − k2)

√
1 − k2 + k4

}

c2 = γ 2

−(2 − k2) + 2
√

1 − k2 + k4

{ − 4 + 4k2 + 5k4 + 2(2 − k2)
√

1 − k2 + k4
}
.

(1, 2′)2

A2
1 = 18γ 2

1 − 2k2 + 2
√

1 − k2 + k4
A2

2 = 18k2γ 2

1 − 2k2 + 2
√

1 − k2 + k4

c1 = 2γ 2

1 − 2k2 + 2
√

1 − k2 + k4

{
5 − 2k2 + 2k4 + (1 − 2k2)

√
1 − k2 + k4

}

c2 = γ 2

1 − 2k2 + 2
√

1 − k2 + k4

{
5 + 4k2 − 4k4 − 2(1 − 2k2)

√
1 − k2 + k4

}
.

(1, 1)1
A2

1 + A2
2 = 2k2γ 2 c1 = c2 = (1 + k2)γ 2.

(1, 2)1
A2

1 = c1 − (1 − k2)γ 2 A2
2 = c1 − (1 + k2)γ 2 c1 − c2 = k2γ 2.

(1, 2′)1
A2

1 = k2{c1 + (1 − k2)γ 2} A2
2 = c1 − (1 + k2)γ 2 c1 − c2 = γ 2.

(−+)

(1, 3)2

A2
1 = 18γ 2

1 + k2 + 2
√

1 − k2 + k4
A2

2 = 18k2γ 2

1 + k2 + 2
√

1 − k2 + k4

c1 = 2γ 2

1 + k2 + 2
√

1 − k2 + k4

{
5 − 8k2 + 5k4 + (1 + k2)

√
1 − k2 + k4

}

c2 = γ 2

1 + k2 + 2
√

1 − k2 + k4

{
5 − 14k2 + 5k4 − 2(1 + k2)

√
1 − k2 + k4

}
.
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(1, 3′)2

A2
1 = A2

2 = 9γ 2

2
√

1 − k2 + k4

c1 = −c2 = 2γ 2
√

1 − k2 + k4.

(3, 3′)2

A2
1 = 18k2γ 2

−(1 + k2) + 2
√

1 − k2 + k4
A2

2 = 18γ 2

−(1 + k2) + 2
√

1 − k2 + k4

c1 = γ 2

1 + k2 − 2
√

1 − k2 + k4

{
5 − 14k2 + 5k4 + 2(1 + k2)

√
1 − k2 + k4

}

c2 = 2γ 2

1 + k2 − 2
√

1 − k2 + k4

{
5 − 8k2 + 5k4 − (1 + k2)

√
1 − k2 + k4

}
.

(1, 1)1

A2
1 − A2

2 = 2k2γ 2 c1 = c2 = (1 + k2)γ 2.

(1, 2)1
A2

1 = c1 − (1 − k2)γ 2 A2
2 = −c1 + (1 + k2)γ 2 c1 − c2 = k2γ 2.

(1, 2′)1

A2
1 = k2{c1 − (1 − k2)γ 2} A2

2 = −c1 + (1 + k2)γ 2 c1 − c2 = γ 2.

(2, 2)1
−A2

1 +A2
2 = 2k2γ 2 c1 = c2 = (1 − 2k2)γ 2.

(2, 2′)1
A2

1 = k2k′−2{−c1 − γ 2} A2
2 = k′−2{−c1 + (1 − 2k2)γ 2} c1 − c2 = k′2γ 2.

(2′, 2′)1

−A2
1 +A2

2 = 2γ 2 c1 = c2 = −(2 − k2)γ 2.

(+−)
(2, 2′)2
A2

1 = 6k4k′−2γ 2 A2
2 = 6k2k′−2γ 2

c1 = (4 + k2)γ 2

c2 = (1 + 4k2)γ 2.

(1, 1)1
−A2

1 +A2
2 = 2k2γ 2 c1 = c2 = (1 + k2)γ 2.

(2, 2)1

A2
1 − A2

2 = 2k2γ 2 c1 = c2 = (1 − 2k2)γ 2.

(2, 2′)1
A2

1 = k2k′−2{c1 + γ 2} A2
2 = k′−2{c1 − (1 − 2k2)γ 2}. c1 − c2 = k′2γ 2.

(2′, 2′)1
A2

1 − A2
2 = 2γ 2 c1 = c2 = −(2 − k2)γ 2.
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(++)

(2, 3)2
A2

1 = 6k4γ 2 A2
2 = 6k2γ 2

c1 = (4 − 5k2)γ 2

c2 = (1 − 5k2)γ 2.

(2, 3′)2

A2
1 = 18k4γ 2

2 − k2 + 2
√

1 − k2 + k4
A2

2 = 18γ 2

2 − k2 + 2
√

1 − k2 + k4

c1 = −γ 2

2 − k2 + 2
√

1 − k2 + k4

{ − 4 + 4k2 + 5k4 − 2(2 − k2)
√

1 − k2 + k4
}

c2 = −2γ 2

2 − k2 + 2
√

1 − k2 + k4

{
2 − 2k2 + 5k4 + (2 − k2)

√
1 − k2 + k4

}
.

(2′, 3)2
A2

1 = A2
2 = 6γ 2

c1 = −(5 − 4k2)γ 2

c2 = −(5 − k2)γ 2.

(2′, 3′)2

A2
1 = 18k2γ 2

−1 + 2k2 + 2
√

1 − k2 + k4
A2

2 = 18γ 2

−1 + 2k2 + 2
√

1 − k2 + k4

c1 = −γ 2

−1 + 2k2 + 2
√

1 − k2 + k4

{
5 + 4k2 − 4k4 − 2(−1 + 2k2)

√
1 − k2 + k4

}

c2 = −2γ 2

−1 + 2k2 + 2
√

1 − k2 + k4

{
5 − 2k2 + 2k4 + (−1 + 2k2)

√
1 − k2 + k4

}
.

(1, 2)1
A2

1 = −c1 + (1 − k2)γ 2 A2
2 = −c1 + (1 + k2)γ 2 c1 − c2 = k2γ 2.

(1, 2′)1
A2

1 = k2{−c1 − (1 − k2)γ 2} A2
2 = −c1 + (1 + k2)γ 2 c1 − c2 = γ 2.

(2, 2)1
A2

1 + A2
2 = 2k2γ 2 c1 = c2 = (1 − 2k2)γ 2.

(2, 2′)1
A2

1 = k2k′−2{c1 + γ 2} A2
2 = k′−2{−c1 + (1 − 2k2)γ 2} c1 − c2 = k′2γ 2.

(2′, 2′)1
A2

1 + A2
2 = 2γ 2 c1 = c2 = −(2 − k2)γ 2.
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